Hydrogen Bonding in Molecules with More Than One Proton Acceptor Site: HOF, HNO, H₂NF, and H₂NOH

Nancy J. S. Peters

Natural Science Division, Southampton College, Southampton, New York 11968 Received: March 17, 1998; In Final Form: June 19, 1998

Ab initio molecular orbital calculations at the MP $2/6-31 + G^{**}$ and MP $4/6-31 + G^{**}$ levels were performed to determine the preferential site of hydrogen bond formation in small molecules where more than one such site exists. For HOF, HNO, H₂NF, and H₂NOH the better hydrogen bond, as measured by bond strength, occurred when the proton acceptance site was the less electronegative atom. Structures and energies for all configuations were determined.

Background

Hydrogen bonding is an important concept in chemistry: it explains numerous phenomena from protein structure to the unusual properties of water. It is also a small effect on the energy scale of intermolecular interactions, worth about 10-50 kJ/mol of neutral hydrogen bonds in most situations, and so is difficult to study experimentally and theoretically. As advances are being made in some areas, such as experimentally determined monomer structures and dimer energies, other areas need further work, such as dimer structures. In fact, the structure of the ammonia dimer, assumed to be the standard, linear, N···H–N, hydrogen bond, has been challenged by microwave spectroscopic analysis¹ and is being reinvestigated.²

A little developed area that may provide new insight into the nature of hydrogen bonding is the hydrogen bond between monomers with more than one potential site for proton acceptance/electron donation. Previous calculational studies predicted³ that the proton affinity of the less electronegative atom in such a molecule, N in hydroxylamine and fluoramine and O in hydrogen hypofluoride, would be higher than the proton affinity of the more electronegative atom, the O in hydroxylamine and the F in fluoramine and hydrogen hypofluoride. Lack of a thorough model led to the misinterpretation of the vibrational spectra and structure of the hydrogen bonded HOF molecule.⁴ It was initially assumed that the hydrogen bond in the dimer would be formed with the fluorine of one molecule serving as the electron donor; after all, fluorine is more electronegative and therefore more negative and more attractive as a site for hydrogen bond formation.

This interpretation was challenged:⁵ the OF vibrational frequency does not shift when comparing solid and gas phase spectra. Oxygen is less electronegative than fluorine and therefore more capable of donating electrons. While fluorine is more electronegative than oxygen and draws charge from oxygen to become partially negatively charged, oxygen is much more electronegative than hydrogen and draws much more charge from hydrogen than fluorine draws from oxygen. The net result is that oxygen is more negatively charged than fluorine in HOF. This interpretation of the charge distribution is supported by calculations.⁶ The final analysis of the solid-state structure of HOF⁷ supports the formation of the hydrogen bond with oxygen as the electron donor.

used structures fully optimized at the HF/3-21G level using GAUSSIAN 82.⁹ The dimer involving a hydrogen bond to the fluorine atom as the proton acceptor/electron donor formed a cyclic structure with two such bonds and a total binding energy of 56.53 kJ/mol. While the cyclic structure was clearly the global minimum, it is interesting to note that the *per bond* hydrogen bond energy is in fact greater for the oxygen proton acceptor: 30.31 kJ/mol versus 56.53/2 = 28.26 kJ/mol. This suggests that solid state structures may differ significantly from dimer structures. Higher level calculations are clearly needed to verify the order of binding energies.

Difluoramine is another molecule with two potential sites for electron donation in the formation of a hydrogen bond: the nitrogen atom and the fluorine atom. The vibrational spectra of HNF₂ comparing the gas and solid phases⁵ shows frequency shifts in modes involving the hydrogens, indicating the presence of hydrogen bonding. However, the NF₂ mode does not show any frequency shift, splitting, or line broadening, a result similar to the OF mode for HOF, which suggests that the hydrogen bond in HNF₂ is to the N and not the F. The structure of difluoramine has only recently been determined¹⁰ and the dimer forms a cyclic structure with two hydrogen bonds: N1–H1·· \cdot F2–N2–H2···N1.¹¹

A systematic study of the dimers of molecules with two potential sites for hydrogen bond formation could further advance our understanding of the phenomenon. We have examined the monomers and dimers of HOF, HNO, H₂NF, and NH₂OH (HNF₂ was attempted, but the dimers fell apart upon optimization), all of which have experimentally determined monomer structures, using ab initio molecular orbital (MO) calculations to determine the minimum energy configurations. Since there are two possible sites on each molecule to serve as electron donors/proton acceptors, the determination of the better, i.e., lower energy, configuration should provide some new insight into the nature of the hydrogen bond. MO calculations are particularly well-suited to this study because configurational restraints can be imposed on the various systems to explore possible, but nonexistent, structures.

Computational Methodology

An early study⁸ of the two configurations for the HOF dimer

Each monomer and two dimer configurations, one for each proton acceptance site, were fully optimized at the MP2/6-

HOF										
parameter	optimized	e	xperimental		parameter	C	optimized	experimental		
r _{HO}	0.9739		0.9657^{a}		v_1 (OF stretch)		952.92	916.84 ^a		
$r_{\rm OF}$	1.4533		1.4350^{a}		v_2 (HOF bend)		1384.18	1396.22 ^a 3763.95 ^a		
21101	91.2198		57.54		v_3 (IIO success)		5791.05	5705.75		
				(HOF)	2					
parameter	oxygen dimer fl	uorine dimer	paramete	r	oxygen dime	er		fluorine dimer		
H1-01 01-F1	0.9787	0.9773	v_1	32.58	(F1O1 O2F2 dihe (F1U2 stratch)	edral bend)	53.34 (OF	sym stretch)		
H1 - O1 - F1	96.48	97.26	$v_2 \\ v_3$	80.20	(F1O1O2H2 ben	d)	138.10 (H 144.87 (H	OF bend out of ring)		
H2-O2	0.9759	0.9773	v_4	189.00	(O····H stretch)		155.50 (H	anti sym bend out of ring)		
O2-F2	1.4514	1.4555	v_5	295.87	(H1···O2H2 syn	m bend)	168.71 (H	sym bend out of ring)		
$H_2 = O_2 = F_2$ $H_1 = O_2^2$	2 008	97.26	v_6 v_7	494.95 954.64	(O2F2 stretch)	tisym bend)	407.77(Of 957.78 (H	OF bend in ring)		
H1-F2	2.000	2.0635	v_8	955.06	(O1F1 stretch)		960.42 (O	F sym stretch)		
H2-F1	2.760	2.0635	v_9	1377.1	1377.15 (H2O2F2 bend) 1410.55 (C		OH bend)			
O1-H1-O2 O1-H1-E2	150.79	1/13/08	v_{10}	1477.3	14//.31 (H101F1 bend) 3710 59 (O1H1 stretch)			1442.48 (OH bend)		
H1-F2-O2		100.85	v_{12}^{11}	3774.0	6 (O2H2 stretch))	3754.56 (0	OH stretch)		
				HNO						
parameter	optimized	e	xperimental		parameter	C	ptimized	experimental		
r _{HN}	1.0502		1.063 ^b		v_1 (NO stretch)		1475.39	1501 ^c		
$r_{\rm NO}$	1.2376		1.212^{b}		v_2 (HNO bend)		1576.57	1565 ^c		
ZHNU	107.29		108.0		v_3 (HIN SUPERCIT)		5101.28	2084		
				(HNO)	2					
parameter	nitrogen dimer	oxygen	limer	parameter	nitrog	gen dimer		oxygen dimer		
HI - NI NI - OI	1.047	1.04	464 102	v_1	11.63 (N10 77.53	OI stretch)	80.24 234 4	4 (NO stretch) 48 (O····H stretch)		
H1-N1-O1	108.13	106.60)1	v_3	104.81 (N1	1H2 stretch	a) 164.4	45 (NH stretch)		
H2-N2	1.047	1.04	464 402	v_4	177.89 (NI	H1 stretch)	174.8	89 (HNO bend)		
N2 = O2 H2 = N2 = O2	1.2407	1.24	402)1	v_5	204.27 (N 296 67 (H)	NO bend)	192.: 236 ⁴	59 (HNU bend) 52 (Hs bend out of plane)		
H1-O2	2.8402	2.30	591	v_7	1474.71 (N	V2O2 stretch)	1479	0.08 (NO stretch)		
H2-O1	0 2772	2.30	591	v_8	1483.65 (H	INO bend)	1480	0.35 (NO stretch)		
N1-H2-N2	129.38			v_{10}	v_{10} 1501.75 (HINOT bend) v_{10} 1596.17 (H2N2 stretch)			.87 (NH stretch)		
				v_{11}	v_{11} 3159.48 (N1H1 stretch)			5.46 (NH stretch)		
				v_{12}	3172.44 (N	V2H2 stretch)	3183	5.85 (NH stretch)		
				H ₂ NF						
parameter	optimized	exper	imental		parameter		optimized	experimental		
r _{NF}	1.0196	1.	0225^d	$v_1 (N)$	VF stretch)		949.68	891 ^d		
$\angle HNF$	100.80	101.	4329" .08 ^d	v_2 (N	$(H_2 \text{ twist})$ $(H_2 \text{ scissor})$		1287.29	1253° 1241^{d}		
∠FNF	105.88	106.	27^d	v_4 (N	v_4 (NH ₂ bend)		1648.39	1564 ^d		
				v_5 (N	v_5 (NH ₂ sym stretch)		3503.88	3234 ^d		
				v_6 (N	H2 anusym sue	icii)	5029.25	5540"		
				(H_2NF)	2					
parameter	nitrogen d	imer f	uorine dime	er p	arameter	nitrogen o	dimer	fluorine dimer		
N1-F1	1.44134	1	.45210		v_1	42.34 (N1F1	stretch)	8.69 (NH bend)		
N1-H11 N1-H12	1.02009	1	.02049		v_2 v_3	111.89 (NH)	twist)	128.42 (NH ₂ twist)		
H1-N1-H1	106.19	1	00.29		v_4	126.00 (NH ₂	twist)	152.01 (NH ₂ twist)		
H1-N1-F1	101.48	1	00.29		v_5	208.21 (HNI	F bend)	158.54 (NH ₂ twist)		
N2-F2 N2-H21	1.45267	1	.45209 .02049							
N2-H22	1.01970	1	.01971							
H21-N2-H2	2 106.20	1	06.20							
H21-N2-F2 N1-H21	99.73 2.24952	1	00.29							
H11-F2	2.69761	2	.16779							
N1-H21-N2	128.64									
N1 - H11 - F2 N1 - F1 - H21	84.13	1	12.32							
		1								

TABLE 1:	: MP2/6-31+G** Optimized Geometries and Harmonic Frequencies of HOF, HNO, H ₂ NOH, and Their Dimer	s (Bond
Lengths in	n Angstroms, Angles in Degrees, Frequencies in cm ⁻¹)	

TABLE 1. Continued

parameter	nitrogen dimer	oxygen dimer		parameter	nitrogen dimer		oxygen dimer		
v_6	327.36 (NH2 twist)	193.74 (NH ₂ twist)		v_{13}	1647.75 (NH ₂ antisym stretch)		1649.27 (NH2 twist)		
v_7	935.81 (N2F2 stretch)	935.79 (NF sym stretch)		v_{14}	1650.18 (NH ₂ syr	n stretch)	1651.91 (NH ₂ bend)		
v_8	959.86 (N1F1 stretch)	939.88 (NF antisym stretch)		v_{15}	3482.71 (NH ₂ ant	tisym stretch)	3505.04 (NH ₂ stretch)		
v_9	1301.34 (NH ₂ bend)	1305.28 (N out-of-plane H stretch)		v_{16}	3512.09 (NH ₂ sym stretch)		3507.61 (NH ₂ stretch)		
v_{10}	1312.17 (HNF bend)	1307.94 (NH ₂ twist)	307.94 (NH ₂ twist)		3615.86 (NH ₂ twi	ist)	3627.69 (NH ₂ stretch)		
v_{11}	1333.06 (NH ₂ twist)	1355.19 (NH ₂ twist)		v_{18}	3631.29 (NH ₂ twi	ist)	3629.00 (NH ₂ stretch)		
v_{12}	1366.48 (NH2 twist)	1362.80 (NH2 twist)							
	H ₂ NOH								
paramet	er optimized	experimental		parameter		optimized	experimental		
r _{NH}	1.0168	1.016^{e}	v_1 ((HNOH dihedr	al bend)	450.56	430 ^e		
$r_{\rm NO}$	1.4523	1.453^{e}	v_2 ((NO stretch)		937.24	895 ^e		
r _{OH}	0.966	0.962^{e}	v_3 ((NH ₂ rock)		1168.16	1120^{e}		
∠HNH	106.23	107.1^{e}	v_4 ((NH ₂ twist)		1336.58			
∠HNO	103.34	103.2^{e}	v_5 ((NOH bend)		1405.57	1357 ^e		
∠NOH	101.85	101.4^{e}	v_6 ((NH ₂ bend)		1696.29	1605^{e}		
∠HNOI	H 124.74		v_7 ((NH ₂ sym stret	ch)	3535.01	3297 ^e		
			v_8 ((NH ₂ antisym s	stretch)	3645.23	3350 ^e		
			v_9 ((OH stretch)		3874.10	3656		
			(H _a N()H),					
	·	1.	(1121)	<u>, , , , , , , , , , , , , , , , , , , </u>	1.				
paramete	ameter nitrogen dimer oxygen dimer parameter		parameter	nitr	murogen dimer		oxygen unner		
N1-H1	1.01763	1.01783	v_1	75.92 (NON	O bend)	65.59 (N	NOON dihedral bend)		
N1-01	1.44802	1.44957	v_2	203.44 (N····H sym stretch)		170.16 (OH••••O stretch)			
O1-H1	0.98120	0.97473	v_3	230.44 (N····H antisym strete		185.37 (NOH bend)			
H1-N1-F	H1 106.02	105.68	v_4	237.53 (NOH bend)		207.92 (NOH bend)			
H1-N1-C	01 104.14	103.90	v_5	253.88 (NH ₂ twist)		215.17 (NH ₂ twist)			
N1-01-H1	101.08	101.70	v_6	338.78 (NH ₂ twist)		343.90 (NH ₂ twist)			
N2-H21	1.01762	1.02077	v_7	733.57 (N····H sym stretch)		481.27 (OH••••O bend)			
N2-H22		1.01711	v_8	865.31 (NO	865.31 (NO antisym stretch)		710.22 (OH stretch)		
N2-O2	1.44780	1.46107	v_9	952.31 (NO	952.31 (NO antisym stretch)		927.10 (OH bend out of plane)		
O2-H2	0.98120	0.9667	v_{10}	959.21 (NO	9.21 (NO sym stretch)		949.01 (NO stretch)		
H2-N2-F	12 106.04	102.83	v_{11}	1196.83 (NI	196.83 (NH ₂ twist) 119		$(NH_2 \text{ sym stretch})$		
H2-N2-C	02 104.16	102.20	v_{12}	1224.83(NH	l ₂ twist)	1209.43	$(NH_2 \text{ antisym stretch})$		
N2-02-H	2 101.11		v_{13}	1316.79 (NI	H_2 twist)	1325.93	(NH ₂ twist)		
HI-N2	1.93409	4 0000	v_{14}	1322.49 (NE	H_2 twist)	13/3.0/	(NOH bend)		
H1-02	1.02500	1.90837	v_{15}	1515.92 (NO	JH bend)	1406.62	(HNOH bend)		
H2-NI	1.93598	2.23093	v_{16}	15/6.53 (NO	JH bend)	1512.25 (NOH bend)			
OI-HI-N	156.92	00.04	v_{17}	1688.46 (NI	$1688.46 \text{ (NH}_2 \text{ bend)}$ 1692.27 (N		$(NH_2 bend)$		
HI-N2-0	102.03	99.86	v_{18}	1695.28 (NI	$1695.28 (NH_2 bend)$ 171		$(INH_2 \text{ bend})$		
UI-HI-C)2	162.37	v_{19}	3523.02 (NI	1_2 sym stretch)	3495.21	(N2H2 stretch)		
H1-02-N2	2	106.91	v_{20}	3529.35 (NI	\mathbf{H}_2 antisym stretch)	3525.70	(NH ₂ twist)		
N2-H22-	NI	146.57	v_{21}	3554.64 (NH	H sym stretch)	3622.44	(NH ₂ stretch)		
H22-NI-	01	102.83	v_{22}	3595.25 (N·	••H antisym stretch	i) 3629.02	$(INH_2 \text{ bend})$		
			v_{23}	3631.49 (NI	1_2 scissor)	3/13.94	(OH stretch)		
			v_{24}	3631.74 (NI	1 ₂ scissor)	3869.33	(OH stretch)		

^a Halonen, L.; Ha, T.-K. J. Chem. Phys. **1988**, 89, 4885 (H¹⁶OF). ^b Harmony, M. D.; Laurie, V. W.; Kuczkowski, R. L.; Shwendeman, R. H.; Pansay, D. A.; Lovas, F. J.; Lafferty, W. J.; Maki, A. G. J. Phys. Chem. Ref Data **1979**, 8, 619. ^c Jacox, M. E. J. Phys. Chem. Ref. Data **1984**, 13, 945. ^d Mack, H. G.; Christen, D.; Oberhammer, H. J. Mol. Struct. **1988**, 190, 215. ^e Tyrrell, J.; Lewis-Bevan, W.; Kristiansen, D. J. Am. Chem. Soc. **1993**, 97, 12768.

31+G** level with diffuse functions on non-hydrogen atoms¹² using the GAUSSIAN 94 programs¹³ available on the Cornell Theory Center RS6000 computers. Intermolecular distances, binding energies for neutral complexes, and vibrational frequency shifts are well described with this bases set and Møller–Plesset perturbation theory.¹⁴

Differences in basis set superposition error (BSSE) are likely to be small enough so as not to effect the conclusions drawn.

Vibrational frequencies were computed for the MP2 optimized structure.

Since the difference between the binding energies of the two dimers could be a kilojoule per mole or less, and better calculations could even reverse the relative order of the two dimer configurations, a single point calculation of each monomer and both its dimers at the MP4/6-31+G** level using the optimized geometries of the MP2 calculation was executed.

Results and Discussion

The MP2/6-31+G^{**} optimized structures and harmonic frequencies of the monomers and dimers of HOF, HNO, H₂-NF, and H₂NOH are summarized in Table 1 and compared with available experimental data for the monomers. The dimers are shown in Figure 1. They are designated as fluorine, oxygen, or nitrogen dimers to indicate the initial proton acceptance site. There is good agreement between experimental and optimized structures of the monomers, particularly for H₂NOH. Bond lengths are within 0.001 Å and angles within 0.8°. The worst agreement is for the OF bond and the NO double bond, optimizations giving bonds too long by 0.018 and 0.026 Å, respectively.

The vibrational frequencies predicted for the monomers are in reasonable agreement with experimental values. Higher

TABLE 2: Energies of (HOF)₂, (HNO)₂, (H₂NF)₂, and (H₂NOH)₂ Dimers

	dimer	EUMP2 ^a	UMP 4^a	$ZPE^{b,c}$	H bond energy ^{b,d}	corrected for $ZPE^{b,c,e}$
(HOF) ₂	oxygen	-350.24408320950	-350.28670746	79.92	22.96	16.36
	fluorine	-350.24371658564	-350.28734716	79.75	26.64	20.21
$(HNO)_2$	nitrogen	-260.29405802238	-260.34257254	79.68	16.71	10.64
	oxygen	-260.29463316816	-260.34371024	80.57	19.70	12.74
$(H_2NF)_2$	nitrogen	-310.67182156368	-310.72278558	153.31	24.95	19.50
	fluorine	-310.67121482768	-310.72273819	152.72	24.82	19.97
$(H_2NOH)_2$	nitrogen	-262.75984692540	-262.81310327	226.41	52.93	42.43
	oxygen	-262.75367335109	-262.80751420	224.55	38.25	29.61

^{*a*} hartrees. ^{*b*} kJ/mol. ^{*c*} Zero point energy. ^{*d*} -H = dimer energy - 2(monomer energy). ^{*e*} Hydrogen bond energy.

Figure 1. Structures for (a) HOF oxygen dimer, (b) HOF fluorine dimer, (c) HNO nitrogen dimer, (d) HNO oxygen dimer, (e) H_2NF nitrogen dimer, (f) H_2NF fluorine dimer, (g) H_2NOH nitrogen dimer, and (h) H_2NOH oxygen dimer. (Numbers on atoms are used for clarification for the parameters described in Table 1.)

frequencies show the greatest deviation, over 13% in the case of HNO. The best agreement occurs when calculations for HOF are compared to the experimental values of isotopically pure $H^{16}OF$, the greatest deviation being less than 4%.

With hydrogen atoms on each monomer and at least two proton acceptance sites, a feature common to all the dimer structures is a ring arrangement of five to six atoms. The optimal structure involves the formation of two hydrogen bonds and a symmetric ring in the cases of the HOF fluorine dimer, the HNO oxygen dimer, the H₂NF fluorine dimer and the H₂-NOH nitrogen dimer. The H₂NOH oxygen dimer forms an asymmetric ring with two hydrogen bonds. The HOF oxygen dimer, the HNO nitrogen dimer, and the H2NF nitrogen dimer each have a second hydrogen that approaches another heavy atom to form the ring structure, but at a distance equal to or greater than the sum of the van der Waals radii.¹⁵ Additionally, the XHY angle is 90° or less in all three cases and therefore these molecules do not have a second hydrogen bond. Hydrogen bond energies, shown in Table 2, are computed as the difference in MP4 energy between two monomers and the dimer, which is then corrected for the difference in zero point energy as computed from the MP2 frequencies.

With the exception of HOF, the favored MP2 optimized dimer, i.e., the lower energy configuration, is also lower in energy at the MP4 level. (OF bonds have been notoriously difficult to adequately describe even at the MP2 level, for example, in F_2O_2 .¹⁶) For the smaller molecules, HOF and HNO, the favored dimer involves the formation of the initial hydrogen bond to the more electronegative atom, F and O, respectively; for the larger molecules, H_2NF and H_2NOH , the favored dimer uses the less electronegative atom, N in both cases. (The H_2 -NF nitrogen dimer is slightly lower in energy at the MP4 level, but inclusion of zero-point energy corrections reverses this relation.) The preference for a given structure results directly from the opportunity to form a second hydrogen bond and, in the case of H_2NOH , to form a better hydrogen bond.

In all the molecules, the less electronegative atom is a central atom, while the more electronegative atom is at or near the terminus of the structure. For the smaller molecules, HOF and HNO, the formation of a second hydrogen bond and a stable ring structure occurs when the terminus atom, the more electronegative one, forms the initial hydrogen bond. For H₂-NOH a second hydrogen bond can be formed with a sixmembered ring even when the central, less electronegative atom is used initially. When the two different dimers of the same monomer are each able to form two hydrogen bonds, the favored structure involves the proton acceptance at the less electronegative atom, as in the nitrogen dimer of H₂NOH.

For all the molecules, the hydrogen bonds with the greatest strength are those with the less electronegative atom as the proton acceptor. For the HOF fluorine dimer, the hydrogen bond energy for two hydrogen bonds is 20.21 kJ/mol or an average of 10.11 kJ/mol of hydrogen bonds; for the oxygen dimer's single hydrogen bond, the energy is 16.36 kJ/mol. Likewise, the oxygen dimer of HNO involves 12.74/2 or 6.37 kJ/mol of hydrogen bonds, compared to the nitrogen dimer's 10.64 kJ per single hydrogen bond, the fluorine dimer of H₂-NF, 19.97/2 or 9.99 kJ/mol of hydrogen bonds, versus the nitrogen dimer, 19.50 kJ/mol; and H₂NOH, with two hydrogen bonds for each dimer, 29.61 kJ of hydrogen bond energy for the oxygen dimer versus 42.43 kJ for the nitrogen dimer.

Conclusion

This study of preference for a proton acceptance site when more than one such atom is available suggests that solid state structures may use hydrogen bonds to the less electronegative atom. Dimer structures in the gas phase or matrix isolation studies, particularly of small molecules with 3-4 atoms, may involve hydrogen bonding to the more electronegative atom.

Acknowledgment. This research was conducted using the resources of the Cornell Theory Center, which receives major funding from the National Science Foundation and New York State with additional support from the Advanced Research Projects Agency, the National Center for Research Resources at the National Institutes of Health, IBM Corporation, and members of the Corporate Research Institute. Figure 1 was Hydrogen Bonding in HOF, HNO, H₂NF, and N₂NOH

generated with the assistance of Bruce Brunschwig and Brookhaven National Laboratory.

References and Notes

(1) Fraser, G. T.; Nelson, D. D.; Charo, A.; Klemperer, W. J. Chem. Phys. **1985**, 82, 2535.

- (2) Klemperer, W.; et al. J. Chem. Phys. 1993, 99, 5976.
- (3) Johansson, A.; Kollman, P. A.; Liebman, J. F.; Rothenberg, S. J. Am. Chem. Soc. **1974**, *96*, 3750.
 - (4) Kim, H.; Appelman, E. H. J. Chem. Phys. 1982, 76, 1664.
 - (5) Christie, K. O. J. Fluor. Chem. 1987, 35, 621.
- (6) Kim, H.; Sabin, J. R. Chem. Phys. Lett. 1973, 20, 215 and Ha, T. J. Mol. Struct. 1973, 15, 486.
- (7) Poll, W.; Mootz, D.; Pawelke, G.; Appelman E. H. Angew. Chem. 1988, 100, 425.
- (8) Peters, N. J. S.; Deakyne, C. Third Chemical Congress, Toronto, Canada, 1998.
 - (9) Binkley, J. S.; Frisch, M. J.; DeFrees, D. J.; Raghavachari, K.;

- Whiteside, R. A.; Schlegel, H. B.; Fluder, E. M.; Pople, J. A. GAUSSIAN 82, Carnegie Mellon University, 1983.
- (10) Mack, H. G.; Christen, D.; Oberhammer, H. J. Mol. Struct. 1988, 190, 215.
- (11) Lascola, R.; Withnall, R.; Andrews, L. J. Phys. Chem. 1988, 92, 2145.
- (12) Moller, C.; Plesset, M. D. Phys. Rev. **1934**, 46, 618 and Binkley, J. S.; Pople, J. A. Inter. J. Quantum Chem. **1975**, 9, 229.
- (13) Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M.
- A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley,
- J. S.; Gonzales, C.; Martin, R. L.; Fox, D. J.; DeFrees, D. J.; Baher, J.;
- Stewart, J. J. D.; Pople, J. A. GAUSSIAN 92, Revision B, Gaussian, Inc. Pittsburgh, PA, 1992.
- (14) Del Bene, J. E., Person, W. B., Szczepaniak, K. J. Phys. Chem. 1995, 99, 10705 and references therein.
- (15) Huheey, J. E.; Keiter, E. A.; Keiter, R. L. *Inorganic Chemistry*, 4th ed.; Harper-Collins College Publishers: New York, 1993; p 292.
- (16) Mack, H. G.; Oberhammer, H. Chem Phys. Lett. 1988, 145, 121 and references therein.